Department of Computer & Information Science

Technical Reports (CIS)

University of Pennsylvania Year 2010

Towards Secure Cloud Data Management

Wenchao Zhou* William R. Marczak? Tao Taot
Zhuoyao Zhang** Micah Sherrft
Boon Thau Loot* Insup Lee®

*University of Pennsylvania
TUniversity of California - Berkeley
fUniversity of Pennsylvania
**University of Pennsylvania
T University of Pennsylvania, msherr@cis.upenn.edu
1 University of Pennsylvania, boonloo@cis.upenn.edu
§University of Pennsylvania, lee@cis.upenn.edu
This paper is posted at ScholarlyCommons.
http://repository.upenn.edu/cis_reports/919

www.manharaa.com




Towards Secure Cloud Data Management
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Boon Thau Loo*  Insup Lee*
*University of Pennsylvania ' University of California at Berkeley
ABSTRACT potential threats posed by malicious entities within the cloud infras-

This paper explores the security challenges posed by data-intensive
applications deployed in cloud environments that span adminis-
trative and network domains. We propose a data-centric view of
cloud security and discuss data management challenges in the ar-
eas of secure distributed data processing, end-to-end query result
verification, and cross-user trust policy management. In addition,
we describe our current and future efforts to investigate security
challenges in cloud data management using the Declarative Secure
Distributed Systems (DS?) platform, a declarative infrastructure for
specifying, analyzing, and deploying secure information systems.

1. INTRODUCTION

Cloud computing is a popular computing paradigm in which com-
putation is moved away from a personal computer or an individ-
ual application server to a “cloud” of computers in the network.
Cloud computing holds the promise of revolutionizing the manner
in which enterprises manage, distribute, and share content. By out-
sourcing web hosting and other IT capabilities to one or more cloud
providers, enterprises may achieve significant cost savings.

In this paper, we propose a data-centric view of cloud secu-
rity — one that focuses on the needs and challenges posed by data-
intensive applications deployed in cloud environments than span
administrative and network domains. Cloud security issues have re-
cently gained traction in the research community, where the focus
has primarily been on securing the low-level operating systems or
virtual machine implementations (e.g., [22]) on which cloud com-
puting services are deployed.

Our work complements such existing research and further intro-
duces a data-driven approach towards cloud security. Our work
is motivated by the observation that the majority of applications
deployed on cloud infrastructures will involve some form of dis-
tributed management, typically in the form of database backends
that are partitioned and replicated. A data-centric view is therefore
well-suited for analyzing the security properties of such data-driven
cloud computing applications. Further, our data-driven approach
enables us to adopt from the ground up well-explored techniques
from the database community, such as recent work on query results
verification [19, 20, 9, 17] of outsourced databases.

Moreover, as the Internet continues to evolve, it is increasingly
dominated by applications that require integration, sharing, and in-
teroperable communication among various services and users on
the Internet. Such applications include traditional retail portals that
integrate content for comparison shopping and social-network sys-
tems that incorporate mashups, blogging, social messaging, and
more recently, collaborative social analysis. A comprehensive cloud
security solution has to provide mechanisms for securely sharing
data among users and content providers, even across administrative
and enterprise boundaries. A data-centric approach enables us to
build upon well-studied database techniques, ranging from database
access control [21] to recent work at using query engines to enforce
and implement extensible trust management policies [16, 26].

This paper makes the following contributions: (i) We categorize

tructure; (ii) we then discuss data management challenges in the ar-
eas of secure distributed data processing, end-to-end query results
verification, and trust policy management; (iii) we propose solu-
tions to many of the identified challenges using Declarative Secure
Distributed Systems (DS?) [26], a declarative platform for speci-
fying, analyzing, and deploying secure information systems; and
finally, (iv) we outline our current and future efforts towards re-
solving the remaining cloud data management security challenges.

2. THREATS AND CHALLENGES

We categorize the threats and challenges of secure cloud data
management in terms of the three components of most cloud com-
puting systems: infrastructure, communication network, and users.

Infrastructure: The cloud infrastructure — i.e., the hosts that pro-
vide cloud computing and data-store services — can be compro-
mised by a malicious adversary. An attacker who controls nodes
on the cloud can launch a variety of attacks, including generating
incorrect query results, conducting denial-of-service (DoS) attacks,
and gaining unauthorized access to sensitive information.

In addition to securing the nodes that constitute the cloud, the
distributed data processing that makes the cloud useful must also
be secured. For instance, in an untrusted setting, an operation that
spans across multiple nodes should be authenticated (and possibly
encrypted). All forms of access control and authorizations of ma-
chines and users should be seamlessly integrated with the data pro-
cessing layer of the cloud. Ideally, users of the cloud should be able
to validate the completeness and integrity of any query processing
that the cloud has performed.

Communication Network: Cloud infrastructures can span across
multiple network domains (e.g., across geographically distributed
data centers), or in the case of cloud federations [4], the cloud itself
may consist of multiple providers that cross administrative bound-
aries. Communication between cloud nodes must be properly se-
cured to protect the confidentiality and integrity of data.

Users: Security mechanisms must ensure that users of the cloud
may access only data that they are authorized. In our context, users
refer to any customer of the cloud provider (for example, an enter-
prise that outsources its database-intensive operations to the cloud).

We argue that the existing model of isolating users within virtual
machines or slices is too restrictive. In several cloud applications
(e.g., mashups, collaborative analysis, social networks), data shar-
ing is an integral aspect, and any cloud data management middle-
ware should provide a framework for securely sharing data between
users. Since users can dynamically enter and leave the cloud, access
control policies should be extensible and easily modifiable.

Given the above security challenges, we next describe DS? in
terms of its declarative language and capabilities. In Sections 4
through 6, we describe how DS? makes significant strides towards
secure cloud data management.
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3. DS? PLATFORM

DS? is a declarative platform for specifying, implementing, and
deploying networked information systems. In prior work [26], we
demonstrate the flexibility and compactness of the Secure Network
Datalog (SeNDlog) language via secure specifications of the path-
vector routing protocol, Chord distributed hash table (DHT) [24],
and the PIER [10] distributed query processor. DS? enhances SeND-
log and its distributed execution engine by providing additional
support for dynamically layering multiple overlays at runtime (e.g.
PIER over Chord) [15] and enabling security policies to be enforced
and integrated across various layers.

In DS?, network protocol and security policies are specified in
SeNDlog [26], a declarative language primarily rooted in Datal.og
that unifies declarative networking [14, 13] and logic-based access
control [2] specifications. SeNDlog programs are disseminated and
compiled at each node into individual execution plans. When exe-
cuted, these execution plans both implement the specified network
protocol as well as enforce its desired security policies. As a core
feature of declarative networking, SeNDlog requires orders of mag-
nitude less code than imperative languages [14].

SeNDlog further extends the basic declarative networking lan-
guage by adding support for authenticated communication. SeND-
log integrates two commonly used constructs in distributed trust
management languages (e.g., Binder [8]): (1) the notion of con-
text to represent a principal in a distributed environment and (2) a
distinguished operator says that abstracts away the details of au-
thentication [8, 12].

To demonstrate the key language features of SeNDlog, we present
the specification of a simple example of a distributed program that
computes all pairs of reachable nodes:

At S:
rl reachable(S,D) :- 1link(S,D).
r2 reachable(D,Z)@D :- 1link(S,D), W says reachable(S,Z).

The program consists of two rules (r1 and r2) that are executed
in the context of node s. The program computes the set of reachable
nodes (reachable) given the set of network links (1inks) between
SandD. Rule r1 takes 1ink (S, D) tuples, and computes single-hop
reachability reachable (S,D). In rule r2, multi-hop reachability
is computed. Informally, rule r2 means that “if there is a link be-
tween s and b', and there exists a node w asserting that z is reach-
able from s, then D can also reach z by using S as the intermediate
node.” The says primitive in rule r2 specifies that the authentic-
ity of the received reachable tuple should be checked, ensuring it
indeed comes from w as it claims.

By modifying the above SeNDlog rules, one can easily develop
more complex routing protocols and policies (e.g., secure BGP).
Since DS?’s dataflow framework captures information flow as dis-
tributed queries, data provenance [3] may be utilized to securely
“explain” the existence of any network state (analogous to the use
of proof-trees [11, 6] in security audits).

We describe two language features of SeNDlog of relevance to
security, with additional details in [26]:

Communication context: Due to the distributed nature of network
queries, a principal does not have control over rule execution at
other nodes. SeNDlog achieves secure distributed query processing
by allowing programs to interoperate correctly and securely via the
export and import of rules and derived tuples across contexts.

In the above example, the rules are in the context of S, where S
is a variable that is assigned upon rule installation. In a distributed
environment, S represents the network address of a node: either a

'Bidirectional links are assumed, where D has a link to s as well.

physical address (e.g., IP addresses) or a logical address (e.g., over-
lay identifier). In a multi-user multi-layered network environment
where multiple users and overlay networks may reside on the same
physical node, s can include a username and network identifier.

Import/export predicates: The SeNDlog language allows differ-
ent principals or contexts to communicate by importing and export-
ing tuples. The communication serves two purposes: (1) to dissem-
inate update and maintenance messages and (2) to distribute the
derivation of security decisions.

During the evaluation of SeNDlog rules, derived tuples can be
communicated among contexts via the use of import predicates and
export predicates. An import predicate is of the form “N says
p” in a rule body, indicating that principal N asserts the predicate p.

The use of export predicates ensures confidentiality and prevents
information leakage by exporting tuples only to specified princi-
pals. An export predicate is of the form “N says p@x” in a rule
head, where principal N exports the predicate p to the context of
principal X. Here, X can be a constant or a variable. If X is a vari-
able, the variable x is required to occur in the rule body. In rule
r2 of the above example, node s will export reachable tuples to
node D. As a shorthand, “N says” can be omitted if N is where the
rule resides.

The says operator implements an authentication scheme [12]
that allows the receiver of the tuple to verify its authenticity. The
implementation of says may depend on the system and its con-
text. In an untrusted environment, says may require digital signa-
tures. In a trusted environment, says may simply append a cleart-
ext principal header to a message (a less computationally expensive
operation than using digital signatures). Somewhere in between,
cryptographic signatures may be applied only to certain important
messages or when communicating with specific principals. DS?
provides sufficient flexibility to support a variety of cryptographic
authentication primitives.

In addition to authentication, DS? also provides mechanisms to
ensure the confidentiality of transmitted tuples. DS® may optionally
encrypt transmitted messages to ensure that they cannot be read by
adversaries or other unauthorized parties.

4. SECURE QUERY PROCESSING

A significant challenge in cloud data management is ensuring
that all query processing is carried out securely within a cloud in-
frastructure. To be secure, query processing must (1) authenticate
users and machines involved in query processing, (2) secure the
transfer of data across machines in the cloud, and (3) ensure the in-
tegrity of all query results. All three requirements can be directly
applied to mitigate potential threats (see Section 2) at the infrastruc-
ture, network, and user levels.

Along an orthogonal axis, there is also the issue of where the
security guarantees are enforced. The obvious solution is to en-
force security within the cloud infrastructure. This places security
burdens entirely on the cloud provider, consequently requiring all
clients to trust their providers. Alternatively, end-to-end verifica-
tion approaches allow users to verify results without requiring the
implicit trust of any given cloud provider, but do so at the cost of
more complex application design.

In this section, we focus on the former in-cloud mechanisms and
defer our discussion of the latter approach to Section 6. We con-
centrate our discussion on an example based on an authenticated
implementation of MapReduce [7].

4.1 Example: Authenticated MapReduce

MapReduce [7] is a paradigm that has been extensively used in
cloud applications for efficiently utilizing parallel resources to solve
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certain classes of distributed problems. Generally, a MapReduce
job consists of two steps: map and reduce. At the map step, a
master node splits the job into small sub-problems and distributes
them to map workers. The results produced by the map workers are
then collected at the reduce step, and are combined into a solution
to the original problem.

In the MapReduce paradigm, users supply the Map and Reduce
functions; the middleware transparently handles distribution and
fault tolerance. In an untrusted environment, all participating nodes
in a MapReduce job must be authenticated. Once authenticated,
additional access policies can be enforce (see Section 5).

As an example, we will consider the WordCounting program in
which MapReduce is used to count the occurrences of words in
webpages. The following rules (m1-m2 for map steps and r1-r2
for reduce steps) demonstrate an authenticated implementation of
MapReduce written in SeNDlog and executed using DS?:

At MW:
ml map (ID,Content) :— file (MW, ID,Content).

m2 emits (MW, Word, Num, Offset) @RW :- word(Word,Num,Offset),
reduceWorker (RID,RW), RID==f_SHAl (Word) .

At RW:
rl reduceTuple (Word,a_LIST<Num>) :-—
MW says emits (MW, Word, Num, Offset) .
r2 reduce (Word,List) :- reduceTuple (Word,List),
Master says rBegin (RW) .

In the program shown above, rules m1 and m2 are within the con-
text of a map worker M, and rules r1 and r2 are in the context of
a reduce worker rRw. As input to the MapReduce operation, the user
supplies the Map and Reduce functions which encode the detailed
operations in the form of imperative programs. We provide a brief
description of these functions:

Map operation: Rule m1 takes as input the £i1le predicates which
contain the identifier and content of each document. The rule gen-
erates the (ID, Content) pairs — i.e., the local map tuples — which
are then passed to instances of the user-defined Map function. Upon
receiving an (ID, Content) pair, each Map instance operates as fol-
lows. It splits the contents of a document (stored in the Content
field) into separate words. For each word, a (WORD, 1) pair is gen-
erated (stored in word tuples), denoting that the occurrence count
of the word should be increased by one. To prevent miscounting the
occurrence of a word that appears at multiple places within the same
document, the 0f £set of each word in the document is tagged with
the corresponding word tuple, which is then sent back to Mw as the
result of the map function.

Rule m2 takes as input word tuples and distributes them (in the
form of emits tuples) to reduce workers. word tuples are assigned
to reduce workers based on SHA-1 hashes of the words. Addition-
ally, to leverage access control in a multi-user setting, a signature is
included within each emits tuple using the says primitive.

Reduce operation: Reduce workers receive and authenticate (e.g.,
via digital signatures) emits tuples from map workers. The tuples
are then grouped by the key field word, as shown in rule r1. The
a_LIST aggregate operator maintains the occurrences of each word
in a list structure.

After the map workers complete their job, a master node sends a
rBegin tuple to each reduce worker, signaling that they should start
the computation of the reduce job. reduce tuples are sent to the
user-defined Reduce instances, each of which takes as arguments
a word and the list of its occurrences. Based on these lists, the
Reduce instances generate and emit the final results —i.e., the total
occurrence counts of words.

Node- vs. user-level authentication: The above program enforces
authentication at the node level: map workers on the same node

(Mw) share a common key to sign tuples. Reduce workers verify
tuples as having been produced by the node Mw.

Alternatively, authentication can occur at the user level. User-
level authentication is useful when intermediate and/or final com-
putation results are shared among users. For instance, a user alice
that runs applications on the cloud may only trust input data from a
particular user bob. Here, the owner of a MapReduce job (e.g. bob
in the above example) signs each tuple with its own signature. If
the number of workers is large, key management is nontrivial. DS?
supports public key infrastructures (e.g., certificate authorities) to
enable workers to more easily generate and verify signatures.

4.2 Evaluation

This section presents an evaluation of DS2. The goal of our
evaluation is two-fold: (1) to experimentally validate DS?’s abil-
ity to implement secure cloud applications using the MapReduce
paradigm, and (2) to study the additional overhead incurred by adopt-
ing authentication in the system.

As a workload, we adapt the WordCounting example from the
previous section, implemented as a two-stage MapReduce job:

NormalizeStage: In the first stage, the master node distributes a set
of webpages to the map workers. Map workers filter out all HTML
tags. The cleansed webpages are further split into small chunks
and submitted to the reduce workers. Each reducer distributes the
webpage chunks to the map workers of the next stage (CountStage)
based on SHA-1 digests of the chunks.

CountStage: The MapReduce operation at the second stage per-
forms the WordCounting operation. Map workers take as input the
small chunks produced from the previous stage and emit (WORD, 1)
pairs to the reduce workers. The reduce workers aggregate such
pairs and generate the result: the occurrence counts of each word in
the input webpages.

As the input of the MapReduce job, we randomly selected 6,400
webpages from a crawled dataset belonging to the Stanford Web-
Base project [1]. The average size of a webpage is 6KB.

We perform the experiments within a local cluster of 16 quad-
core machines with Intel Xeon 2.33GHz CPUs and 4GB RAM run-
ning Linux 2.6, interconnected by Gigabit Ethernet. We deploy 16
map workers and 16 reduce workers on the NormalizeStage and
32 map workers and 128 reduce workers on the CountStage. Each
physical machine runs a total of 12 MapReduce worker instances.
To avoid packet-drops due to congestion, we rate-limit the number
of packets sent per second.

To evaluate the overhead incurred by performing authentications,
we constructed three versions of the WordCounting job: NoAuth,
RSA-1024 and HMAC. In NoAuth, MapReduce workers transmit tu-
ples without including the sender’s signature, whereas in RSA-1024
and HMAC the communication between different map and reduce
workers are authenticated using 1024-bit RSA signatures and 160-
bit SHA-1 HMAC:s, respectively.

Figure 1 shows the per-node bandwidth usage over time achieved
by the three versions of the WordCounting job. All three versions
incur spikes in their bandwidth utilization in the first 30s. The
spikes are mainly attributed to the cross-node communication at the
NormalizeStage. The MapReduce operation at this stage is com-
putationally cheap but network intensive, as the tuples transmitted
in this phase consist of relatively large chunks of documents (as
compared to (WORD, 1) pairs in the CountStage).

We observe that NoAuth finishes the computation in 350 seconds,
whereas HMAC and RSA-1024 incur an additional 17.4% (60s) and
78.3% (270s) overhead in query completion latency, respectively.
The increase in query completion time is due primarily to the com-
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putation incurred by signature generation and verification.

Given that a dominant portion of the communication is small-
sized (WORD, 1) pairs, the relative overhead incurred by tagging
signatures with transmitted tuples is significant. We observe that
the respective aggregated communication overheads of HMAC and
RSA-1024 are 18.4% (7.5MB) and 53.3% (21.8MB) higher than
NoAuth. However, due to the use of network throttles in our evalu-
ation, the per-node bandwidth utilization for the three versions are
similar.

4.3 Layered Encryption and Authentication

The above example illustrates authenticated computations at the
data processing layer of a cloud infrastructure. Given that cloud in-
frastructures can span multiple network or administrative domains,
communication must also be properly secured. SeNDlog provides
additional security constructs for encrypting communication.

Authentication and encryption can be enforced either at the data
processing layer or at the network layer. Since DS? is based on
declarative networking, it is a natural platform for implementing
secure communication substrates (e.g., implementing secure rout-
ing protocols on the control plane and secure forwarding on the
data plane). For instance, when the map and reduce workers trans-
mit tuples, these tuples may traverse untrustworthy channels. DS?
provides a mechanism for performing secure forwarding of tuples,
effectively constructing a transient virtual private network between
workers. For example, the following SeNDlog program performs
authenticated packet forwarding given the forwarding table at ev-
ery node in the network:

At Router,
f1 packet (Pid,Dest,Data)@NextHop :-
forwarding (Dest, NextHop), Router != Dest,
P says packet (Pid,Dest,Data) .

The forwarding table maintains the nextHop router along the
shortest path to any given destination (Dest). Rule £1 forwards
a packet pid received from the upstream router P along the best
path to Dest via the nextHop router. This payload is recursively
routed by rule £1 to the destination, with authentication occurring at
every hop. Similar declarative techniques can be used to compactly
specify encrypted communication using the SeNDlog language.

Most importantly, DS?’s ability to unify different layers of pro-
tocols (i.e., data processing and network routing) make it an inter-
esting framework for performing cross-layer protocol analysis. For
example, DS? may be well-suited for constructing provenance in-
formation [18] that spans system and network layers and crosses
administrative domains.

5. SECURE DATA SHARING

Data sharing and integration are integral to many classes of appli-
cations that operate in a multi-user cloud environment. If the cloud
spans administrative domains, a domain may wish to define poli-
cies to share data with another domain for the purposes of further
distributing or outsourcing of computation. Moreover, applications
deployed in the cloud may be isolated within their own virtual ma-
chines. Such isolation may be relaxed by enabling principals to
securely interact using access control policies.

The enforcement of access control policies can become compli-
cated by the fact that users may frequently enter or leave the cloud,
requiring policies to be rapidly updated. Real-world trust policies
are complex and may require functionality beyond that offered by
traditional tuple-level access control policies. Devising a scheme
to respond to the dynamics and complexity of cloud environments
represents a significant challenge.

In this section, we propose methods in which DS? can be em-
ployed to readily support complex and dynamic policies through

query rewriting and other techniques. Our approach builds upon
traditional database-based and logic-based access control mecha-
nisms for reasoning about trust policies.

5.1 View-based Access Control and Rewrites

Traditional databases typically utilize view-based access control
in which views are expressed in SQL, with access controls to these
views enforced via explicit permissions granted to authorized users.
Such views are easily expressible in DS?. For example, if a user
alice owns an employees predicate that stores the names, de-
partments, and salaries of employees, then she may create a security
view for some other user, Bob:
At alice:

svl: employee_sv_bob (Name,Dept) :—

employee (Name, Dept, Salary), Salary < 5000.
sv2: predsecview ("employee", "employee_sv_bob",bob) .

In this example, alice allows bob to view only those employ-
ees in any department who have a salary less than $5000. The
employee_sv_bob predicate represents both a horizontal
(salary<5000) and vertical (salary column omitted) partition of the
employee predicate. Note that employee_sv_bob (defined by rule
sv1l) is dynamically applied as the predicates in the rule body up-
date, and hence its contents change with the contents of the
employee predicate. In rule sv2, an additional predicate
predsecview is maintained to associate security views with the
protected predicate.

DS? can easily express security views that apply to entities other
than single users. For example, alice may delegate access to the
users whom a certificate authority believes are good by replacing
rule sv2 with the following rule:

non

sv2’: predsecview ("employee", "employee_sv_good",U) :-—
cert_authority says good(U) .

In addition to supporting simple horizontal and vertical slicing,
DS? also permits more complex partitioning of access control. For
example, access rights may be based on provenance information
(e.g., Alice allows Bob to view only those employee tuples derived
using information from Bob). In general, SeNDlog’s flexibility en-
ables DS? to support a wide variety of access control policies.

Enforcement. We have thus far left unspecified how security views
are enforced. Standard Datalog cannot prevent users from submit-
ting a query that references predicates directly, nor can unmodified
Datalog dynamically rewrite queries to refer to the security views.
To enable these capabilities, we extend Datalog to represent the cur-
rently executing queries in tables accessible to the program — a con-
cept we call the DS? meta-model. Our approach is similar to the
recently proposed Evita-Raced meta-compiler catalog [5].
Preventing queries from directly reading predicates (e.g.,
employee) is made possible by adding schema constraints called
meta-constraints [16] to the meta-model. Meta-constraints restrict
the set of allowable queries. In particular, DS? uses meta-constraints
to express that users can only insert queries that refer to security
views:
says (U,R), body(R,A), functor(A,P) -> predsecview(_,P,U).

The above example introduces the schema constraint format. Note
that instead of : —, the head and body are separated by a right-arrow
(-=>). The logical meaning of this format is that if, for any assign-
ment of the variables, the left hand side (LHS) is true, then the right
hand side (RHS) must also be true. If, on the other hand, the LHS
is true but the RHS is false, then evaluation of the query terminates
with an error.

In the above constraint, says associates a user U with a query R,
and body and functor are meta-model predicates that examine the
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structure of the rule. The constraint expresses that every predicate
mentioned in the body must be the security view of some other
predicate (since the variable for this other predicate is unimportant
in the constraint, we represent it with an underscore).

Rewriting queries is equally simple using meta-rules:

-rulebody (R,B), +rulebody(R,C), +atom(C), +atompred(C,S),
+atomargs (C,N,V) :—

P says R, rulebody(R,B), atompred(B,P),

predsecurityview(P,S), predargs(S,N,V).

This rule leverages DS?’s support for code generation (also called
updating rules). Code generation changes the current state of the
database by asserting and retracting specific tuples. In this case,
the rule updates the body of the query by retracting (-) the body
atom representing the original predicate and asserting (+) the body
atom representing the security view. Note that the logical meaning
of a conjunction of atoms in the head of arule 1,92, ...,qm :-
pl,p2,...,pnisthesetof mrules: gi :- pl,p2,...,pn.

5.2 Multi-user Multi-stage MapReduce

In Section 4, we introduced an authenticated version of MapRe-
duce. Given that both access control policies and the MapReduce
program are specified within SeNDlog, it is easy to integrate access
control policies as additional rules in the program. The program-
mer needs only to supply a set of policy rules; DS? automatically
performs the query rewrites to generate the appropriate rules for
executing the MapReduce program.

In practice, given that MapReduce operations can span multiple
stages (i.e., compose several MapReduce operations), access con-
trol can be enforced across stages. For instance, if alice starts a
MapReduce operation and the resulting output is used by bob for
his subsequent MapReduce operation, one needs to ensure that bob
only accesses data that he is authorized to view. One naive solution
is to enforce access control only at the boundaries of each MapRe-
duce operation —i.e., on the resulting output between jobs. A more
sophisticated solution that we are currently exploring is to “push-
down” selection predicates dynamically into each MapReduce ex-
ecution plan. This ensures that proper filtering is applied early so
that only authorized data flows downstream to later stages of the
MapReduce operations. In this example, the trust relationships be-
tween alice and bob may result in filtering of input data as early
as alice’s MapReduce operation, causing only the data that bob
is authorized to view to be processed. We are currently investigat-
ing methods to adapt the dynamic rewrite capabilities presented in
[16] to handle more complex sharing, particularly across users and
multiple stages of MapReduce computations.

6. END-TO-END VERIFICATION

The above discussion assumes that security is enforced within
the cloud infrastructure by the cloud provider. That is, the provider
correctly applies the security mechanisms described in Section 4 to
support authenticated and confidential queries.

Alternatively, queries may be protected using end-to-end verifi-
cation. _These approaches are motivated by clients who outsource

Figure 2: MHT for table X

Figure 3: P-MHT for table X

their database operations to third parties (e.g., cloud operators).

End-to-end verification works by requiring nodes to transmit ver-
ification objects (VOs) along with query results. Clients use VOs to
verify the correctness of the tuples in the returned resultsets.

Below, we briefly review existing end-to-end verification tech-
niques and discuss some of their limitations. Additionally, we de-
scribe our proposed adaptations of these techniques for the cloud
environment. For ease of exposition, we consider the case in which
a content provider outsources its database operations to a third-
party server. The provider (the client) wishes the verify the cor-
rectness of the query results.

6.1 Existing Techniques

A simple approach for creating a VO is via per-tuple
signatures [19]. Here, the data owner digitally signs each tuple be-
fore storing them on the server’s site. In response to a query result,
the server sends the matching tuples and their corresponding signa-
tures to prove the integrity and correctness (but not necessarily the
completeness) of the results.

A more robust approach that ensures completeness of query re-
sults relies on signature-chaining [20] in which a signature is gen-
erated from each tuple and its two adjacent tuples (neighbors) in
the table. The signature chain guarantees completeness since it is
not possible to omit a result tuple while still satisfying the neigh-
bors’ signatures. The order of tuples in the table can be determined
based on tuple ID or a sort on one of the attributes. Upon com-
puting the query results, the server returns the result tuples, their
neighbors, and the corresponding signatures. The approach may
be customized for range queries to ensure that a malicious server
cannot omit a result tuple within the queried range.

Unfortunately, the signature-chaining scheme is inefficient in
terms of storage, communication, and computation costs. An al-
ternative authentication approach for range queries uses a Merkle
Hash Tree (MHT) [9, 17]. The MHT is constructed as a binary tree
in a bottom-up fashion, in which the leaves correspond to the hashes
of the tuples in a sorted table. Non-leaf nodes correspond to the
hash of the concatenation of the children, and the tree construction
process is carried out recursively to the root of the tree. The con-
tent provider maintains the MHT along with the master database.
When it outsources the database to servers in the cloud, it sends
both the database and the MHT to the server. In addition, it also
authenticates the MHT root with its signature. A VO consists of
the signed root and the collection of log(n) internal tree nodes that
enable the verifier to recompute the root of the MHT. In the verifica-
tion process, given a set of query results and the corresponding VO
returned by the server, a client verifies the query results by comput-
ing the MHT based on the query results. If the root of its computed
MHT matches that of the signed root contained in the VO, then the
query results are guaranteed to be valid and complete.

Built upon the techniques presented above for verifying range
queries, recent work [25] proposes three techniques — AISM, AIM,
and ASM - to perform join operations with the capability to verify
the completeness and integrity of the computation results. While
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AIM utilizes the MHTs of the both joining tables, AISM and ASM
relax the requirement on the availability of MHTs by sacrificing
performance.

6.2 End-to-End Verification in the Cloud

Several characteristics of the previously described existing ap-
proaches make them unsuitable for the cloud environment: First,
the requirement of a master database at the content provider limits
the possibility of queries that integrate content from multiple clients
on the cloud. Second, the MHT-based approach is not amenable to
a database in which the contents are dynamic, since the MHT needs
to be recomputed whenever the base data changes. Third, in the
cloud environment, data can potentially be distributed across sev-
eral nodes, complicating the process of MHT construction.”

We are currently exploring techniques that address all of the above
limitations by developing new capabilities using the DS? platform.
One of our ongoing research approaches is to add completeness and
integrity verification capabilities to SeNDlog’s query results. Addi-
tionally, we are exploring the application of data provenance for
checking the completeness and integrity of data processing. Along
another line, researchers have been exploring challenge-based ap-
proaches (see, for example, [23]) to verify the compliance of pro-
gram executions to their expected behaviors. In general, we plan to
support distributed verification with the ability to handle dynamism
in both data and nodes within the DS? system.

Due to space constraints, we focus below on the challenge of
constructing MHT for distributed verification. Consider the case in
which a table is horizontally partitioned across a set of machines,
where each machine maintains a range of tuples in a sorted table.
‘We propose an approach called partitioned MHT (P-MHT) that may
be applied to data partitions, thus allowing efficient data mainte-
nance and verification across cloud providers.

To demonstrate how P-MHT can be applied, we consider the ta-
ble X = {x1,z2,23,...,28}. The MHT of the table is shown
in Figure 2, where h(z;) is the digest of the tuple x;. Suppose
X is partitioned into three sub-tables, i.e., X {z1, 22, 23},
Xo = {xa,x5,26}, and X3 = {x7,2s}. In addition to storing
the tuples, each sub-table maintains a P-MHT that maintains suffi-
cient information for the local generation of the VO for any tuple
in the sub-table. For instance, Figure 3 shows the P-MHT for X;.
Although the P-MHT is a partial MHT, it may still generate the VO
for any tuple maintained in X;. For example, the VO for x3 is
h(z1-2), h(x4), h(x5-s), which, when combined with x3, can be
used to compute the MHT root and thus validate the integrity of the
query result by comparing with the root signed by the table owner.

Our approach works for tables that are ordered and range par-
titioned across nodes. Verifying query results across hash-based
partitions is still an open area of future work.

7. CONCLUSION

This paper outlines the challenges of secure cloud data manage-
ment. We propose security mechanisms based on the DS? system
that address these challenges. Our initial results indicate that DS?

The authenticated join processing techniques presented in the pre-
vious section are also also inapplicable when tables are partitioned
across nodes: AISM and ASM require on-the-fly sort on at least one
joining table. Such a requirement lacks an efficient distributed solu-
tion and seriously jeopardizes the performance and even feasibility
of these two approaches. On the other hand, the AIM algorithm
is still applicable even when tables are distributed across nodes;
however, it cannot handle more complex multi-way or multi-level
joins. Additionally, one may have to build multiple MHTs for a ta-
ble (each for a different join key) when using AIM on joins that are
conducted with different join keys.

provides query authenticity with little overhead. We plan to deploy
our prototype on PlanetLab to validate its performance in more re-
alistic settings.

The SeNDlog language and interpreter are available for download
at http://netdb.cis.upenn.edu/rapidnet/downloads.html.

Although we have presented our examples as compact SeNDlog
programs, other policy specification languages may also be appli-
cable. As an alternative that achieves backward compatibility and
legacy support, we are exploring utilizing DS? as a separate exten-
sible trust management policy engine that may be incorporated into
existing distributed computing software (e.g. Hadoop).
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